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Abstract

We investigate the perturbative expansions of the ground-state wavefunctions
of the quantum anharmonic oscillators. With an appropriate change of spatial
scale, the weak-coupling Schrödinger equation is transformed to an equivalent
strong-coupling one. The Friedberg–Lee–Zhao method is applied to obtain
the improved perturbative expansions. These perturbative expansions give a
correction to the WKB results for large spatial distances, and reproduce the
conventional weak-coupling results for small spatial distances.

PACS numbers: 03.65.Ge, 02.30.Mv, 04.25.−g

1. Introduction

Quantum anharmonic oscillators have now become an important model for testing various
approximate methods. For example, they have been used to study conventional Rayleigh–
Schrödinger perturbation theory [1], Padé and Borel summation of perturbation series [2],
the variational perturbation method [3–6] and strong coupling expansions [7–9]. The list
provided here is far from exhaustive. In a series of pioneering works, Bender and Wu
have applied the conventional Rayleigh–Schrödinger perturbation theory to present the weak-
coupling expansions for the energy eigenvalues and eigenfunctions of quantum anharmonic
oscillators. It has been shown that the naive perturbation expansions for the energy eigenvalues
are usually divergent. To find the convergent forms of the energy eigenvalues, several other
methods have been developed in the past several decades [3–15]. On the other hand, in the
conventional perturbation method, the wavefunctions of quantum anharmonic oscillators are
generally written as a Gaussian multiplied by a polynomial. By resumming the perturbation
series, Bender and Bettencourt have constructed the asymptotic behavior of the wavefunctions
for large spatial distances [16]. This asymptotic behavior agrees well with the WKB result.
Kunihiro has shown in a subsequent work that the naive perturbation series can be represented
by an exponential function [17]. Following the resummation performed by Bender and
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Bettencourt, the author found that the agreement with the WKB result becomes worse if the
higher order terms are included.

In this paper, we reconsider the perturbative expansions of the ground-state wavefunctions
of the quantum anharmonic oscillators. With the help of a scaling transformation, we obtain
an equivalent strong-coupling Schrödinger equation. The Friedberg–Lee–Zhao (FLZ) method
is then applied to obtain a perturbative series of the ground-state wavefunctions [18]. This
perturbative series agrees with the WKB results for large spatial distances, and reproduces the
conventional weak-coupling results for small spatial distances. In particular, we shall show
that the WKB result can be exactly obtained by resumming the highest-power terms in the
perturbation expansions given by Kunihiro.

2. The ground states of the quantum anharmonic oscillators

We first give a brief introduction to the results given by Bender and Bettencourt and Kunihiro.
Following the notations of Bender and Bettencourt, we consider the following Schrödinger
equation for the quantum anharmonic oscillators:(

− d2

dx2
+

1

4
x2 +

1

4
εx2m − E

)
ψ(x) = 0,m = 2, 3, 4 . . . , (1)

with the boundary condition ψ(±∞) = 0. Here 0 < ε � 1 is the small parameter. In the
conventional Rayleigh–Schrödinger perturbation theory, the wavefunction and the eigenvalue
for the ground state are both expanded in terms of power series of ε [16]:

ψ(x) =
∞∑

n=0

εne− 1
4 x2

Pn(x), E =
∞∑

n=0

εnEn, (2)

where Pn(x) is a polynomial of degree 2n in the variable x2. For m = 2, Bender and
Bettencourt have presented the polynomials Pn(x) up to the sixth order [16]. Kunihiro has
further shown that the conventional perturbation expansion can be re-expressed as [17]

e− 1
4 x2

∞∑
n=0

εnPn(x) = exp

[
−

∞∑
n=0

εnfn(x)

]
. (3)

The polynomials fn(x) up to the sixth order are listed as follows [17]:

f0(x) = 1

4
x2,

f1(x) = 3

8
x2 +

1

16
x4,

f2(x) = −21

16
x2 − 11

64
x4 − 1

96
x6,

f3(x) = 333

32
x2 +

45

32
x4 +

7

64
x6 +

1

256
x8,

f4(x) = −30 885

256
x2 − 8669

512
x4 − 1159

768
x6 − 163

2048
x8 − 1

512
x10, (4)

f5(x) = 916 731

512
x2 +

33 171

128
x4 +

6453

256
x6 +

823

512
x8 +

319

5120
x10 +

7

6144
x12,

f6(x) = −65 518 401

2048
x2 − 19 425 763

4096
x4 − 752 825

1536
x6 − 43 783

4096
x8

− 3481

2048
x10 − 1255

24 576
x12 − 3

4096
x14,

2
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where the normalization condition ψ(0) = 1 has been used, and we have thus fn(0) = 0. The
corresponding energy eigenvalue up to the three-order terms is given by

E0 = 1

2
, E1 = 3

4
, E2 = −21

8
, E3 = 333

16
. (5)

On the other hand, WKB analysis shows that for large x

ψ(x) ∼ exp
(−√

ε|x|3/6
)
. (6)

To study how this perturbation expansion can reproduce the WKB behavior, Bender and
Bettencourt found that if all terms beyond ε4x10/512 are neglected, the sum of the highest-
power terms in fj (x)(j � 4) is nicely rewritten as

x2

4

(
1 + εx2 +

17

12
ε2x4 +

5

12
ε3x6 +

77

1152
ε4x8

)1/8

, (7)

which behaves for large x as
√

ε|x|3
4(1152/77)1/8

�
√

ε|x|3
5.966 63

. (8)

This result has an excellent agreement with the WKB result. However, Kunihiro found that
by neglecting all terms beyond 7ε5x12/6144, the sum of the highest powers in fj (x)(j � 5)

may be rewritten as

x2

4

(
1 +

5

2
εx2 +

115

48
ε2x4 +

35

32
ε3x6 +

15

64
ε4x8 +

4459

164 608
ε5x10

)1/10

. (9)

For large x, its asymptotic behavior is
√

ε|x|3
4(164 608/4459)1/10

�
√

ε|x|3
5.738 27

. (10)

When the sixth order is included by neglecting all terms beyond 3ε6x14/4096, the sum of the
highest powers in fj (x)(j � 6) is rewritten as

x2

4

(
1 + 3εx2 +

29

8
ε2x4 +

9

4
ε3x6 +

577

768
ε4x8 +

67 621

493 824
ε5x10 +

1324 349

35 555 328
ε6x12

)1/12

, (11)

where the coefficient of
√

ε|x|3 for large x is given by

1

4(35 555 328/1324 349)1/12
� 1

5.261 81
. (12)

It follows from the above results that the agreement with the WKB result becomes worse when
higher order terms are included, and thus is the best at the fourth order [17]. In the following,
we shall show that the sum of the highest-power terms in fj (x) can exactly reproduce the
WKB behavior.

With the change of variable z = ε
1

2(m−1) x, the Schrödinger equation (1) can be transformed
into an equivalent strong-coupling Schrödinger equation[

− d2

dz2
+

g2

4
(z2 + z2m) − Ẽ(g)

]
ψ(z) = 0, (13)

where g = ε1/(1−m) � 1 and Ẽ(g) = E/g. For the ground state, the wavefunction can be
written as

ψ(z) = e−S(z), (14)
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and then S(z) has to satisfy

d2S

dz2
−

(
dS

dz

)2

+
g2

4
(z2 + z2m) − Ẽ(g) = 0. (15)

In the case of large g, Friedberg, Lee and Zhao have proposed the following expansions in
terms of g for S and Ẽ [18]:

S(z) =
∞∑

n=0

g1−nSn(z), (16)

Ẽ(g) =
∞∑

n=0

g1−nẼn. (17)

Substituting equations (16) and (17) into equation (15), and equating the coefficients of like
powers of g on both sides, we find equations for successive determination of Sn and Ẽn:

−
(

dS0

dz

)2

+
1

4
z2 +

1

4
z2m = 0, (18)

d2Sn−1

dz2
− 2

dS0

dz

dSn

dz
−

n−1∑
k=1

dSk

dz

dSn−k

dz
− Ẽn−1 = 0 (n � 1). (19)

If we adopt the normalization condition ψ(0) = 1, we require Sn(0) = 0. From equation (18),
one can obtain S0, and then substitute it into equation (19) with n = 1. By requiring S1 to be
analytic at z = 0, we can obtain Ẽ0 and then S1. In such a way, one can determine all Ẽn and
Sn. In what follows, for brevity, we shall only consider the following two cases: m = 2 and
m = 3.

2.1. The case of m = 2

In the case of m = 2, we have z = √
εx and g = 1/ε. It follows from equation (18) that

dS0

dz
=

√
z2 + z4

2
, (20)

where due to the boundary condition ψ(±∞) = 0, we take the positive square root. S0(z) is
thus given by

S0(z) = 1
6

[
(1 + z2)3/2 − 1

]
. (21)

Substituting S0(z) into equation (19) with n = 1 yields

dS1

dz
= 1 + 2z2

2(z + z3)
− Ẽ0√

z2 + z4
. (22)

For S1 to be analytic at z = 0, we require that the limit

lim
z→0

1 + 2z2 − 2Ẽ0

√
1 + z2

2(z + z3)
(23)

should be a finite value. This leads to Ẽ0 = 1/2 and

S1(z) = 1

4

[
ln(1 + z2) + 2 ln

(
1 +

√
1 + z2

) − 2 ln 2
]
. (24)

After substitution of S0(z) and S1(z) into equation (19) with n = 2, we have
dS2

dz
= 1

4z3(1 + z2)5/2

[
−4 − 7z2 − 8z4 + (4 + 8z2)

√
1 + z2 − 4Ẽ1z

2(1 + z2)2
]
. (25)
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For S2 to be analytic at z = 0, we obtain Ẽ1 = 3/4 and

S2(z) = 1

12z2
(
1 + z2

)3/2

[
6 + 20z2 + 9z4 − (6 + 17z2 + 17z4)

√
1 + z2

]
. (26)

In a similar way, one can determine all Ẽn and Sn.
In the following, we discuss the asymptotic behavior for the ground-state wavefunction.

As z → ±∞, we have

S0(z) → 1

6
|z|3, (27)

S1(z) → ln |z|, (28)

S2(z) → −17

12
. (29)

It is clearly seen that for large x, gS0 → √
ε|x|3/6 corresponds to the WKB result, and

S1 → ln |√εx| represents its correction. Due to |x|3 � ln |x| for large x, the asymptotic
behavior of the wavefunction is mainly determined by exp

(−√
ε|x|3/6

)
. We note that as

x → ±∞, S2(x) approaches a finite value of −17/12. This motivates us to continue our
calculations. With higher order calculations, we further find that such a behavior also appears
in Sn(n � 3) indeed. It follows that the WKB method provides a very accurate analysis of the
asymptotic behavior of the ground-state wavefunction for large x.

For small z, we can have the following expansions:

S0(z) = 1

4
z2 +

1

16
z4 − 1

96
z6 +

1

256
z8 − 1

512
z10 +

7

6144
z12 − 3

4096
z14 + · · · , (30)

S1(z) = 3

8
z2 − 11

64
z4 +

7

64
z6 − 163

2048
z8 +

319

5120
z10 − 1255

24576
z12 + · · · , (31)

S2(z) = −21

16
z2 +

45

32
z4 − 1159

768
z6 +

823

512
z8 − 3481

2048
z10 + · · · . (32)

With equations (4) and (30), we observe that gS0(z) is the total sum of the highest-
power terms in εjfj (x)(j � 0). This result can be verified by using the relation∑

n=0 g1−nSn(z) = ∑
n=0 εnfn(x). Due to z = √

εx and g = 1/ε, the highest-power
terms in εjfj (x) are ∼gz2j+2, and S0 is thus the collection of the terms with the same order of
g. Similarly, S1 is the sum of the second highest-power terms in εjfj (x)(j � 0) behaving as
z2j for small x. Clearly, our perturbation expansion actually corresponds to a resummation of
the perturbation expansion given by Kunihiro.

On the other hand, the conventional weak-coupling expansion for the energy eigenvalue
can be obtained from our perturbative expansion by the relation∑

n=0

g1−nẼn =
∑
n=0

εnEn. (33)

Therefore, in a comparison with equation (2), we find that the FLZ method gives the same
perturbative expansion for the energy eigenvalue with the conventional perturbation theory.

5
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2.2. The case of m = 3

In the case of m = 3, we have z = ε1/4x and g = ε−1/2. Sn(z)
′s up to the three-order terms

are given by

S0(z) = 1

8

[
z2

√
1 + z4 + arcsinhz2

]
, (34)

S1(z) = 1

4

[
ln(1 + z4) + ln

(
1 +

√
1 + z4

)
− ln 2

]
, (35)

S2(z) = 1

24z2
(
1 + z4

)3/2

[
12 + 51z4 + 19z8 − 12

√
1 + z4

]
, (36)

S3(z) = 1

8z4
(
1 + z4

)3

[
−10 − 55z4 − 195z8 − 165z12 − 55z16

+ (10 + 50z4 + 35z8 + 15z12)
√

1 + z4
]
. (37)

As z → ±∞, we have

S0(z) → 1

8
z4, (38)

S1(z) → ln |z|, (39)

S2(z) → 19

24
, (40)

S3(z) → −55

8
. (41)

In this case, we find that as x → ±∞, Sn(x)(n � 2) approaches a finite value. Therefore,
gS0 → √

εx4/8 corresponds to the WKB result, and S1 → ln |ε1/4x| is its correction. With
z = ε1/4x and g = ε−1/2, the highest-power terms of εjfj (x) for small x are ∼gz4j+2. The sum
of all the terms with the same order of g leads to gS0(z). The second highest-power terms of
εjfj (x) for small x are ∼z4j , and the sum of them is S1. Generally, g1−nSn is the sum of the nth
highest-power terms in εjfj (x)(j � n). In addition, with

∑
n=0 g1−nSn(z) = ∑

n=0 εnfn(x)

for small x, we can obtain the polynomials fn(x). Here we only present them up to the third
order:

f0(x) = 1

4
x2, (42)

f1(x) = 15

8
x2 +

5

16
x4 +

1

24
x6, (43)

f2(x) = −3495

32
x2 − 545

32
x4 − 47

24
x6 − 19

128
x8 − 1

160
x10, (44)

f3(x) = 1239 675

64
x2 +

197 875

64
x4 +

72 385

192
x6 +

2165

64
x8 +

141

64
x10

+
37

384
x112 +

1

448
x14. (45)

These expressions can also be obtained directly by the exponential perturbation theory [17].
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On the other hand, the ground energy up to the three-order terms is given by

Ẽ0 = 1

2
, Ẽ1 = 0, Ẽ2 = 15

4
, Ẽ3 = 0. (46)

With
∑

n=0 g1−nẼn = ∑
n=0 εn/2En, we can obtain the relation between the conventional

weak-coupling expansion and our perturbative expansion: En = E2n. For example,
E0 = Ẽ0 = 1/2 and E1 = Ẽ2 = 15/4 are just the first two terms in the conventional
perturbation expansion.

3. Conclusion

In conclusion, by using a simple scaling transformation, we have transformed the original
weak-coupling Schrödinger equation to an equivalent strong-coupling one. This allows us
to apply the FLZ method to obtain the perturbative expansions for the ground states of
the quantum anharmonic oscillators. It is shown that although we cannot obtain a better
perturbative expansion for the energy eigenvalues, we can get an improved wavefunction of
the ground state, which agrees with the WKB result for large spatial distances, and gives the
conventional weak-coupling result for small spatial distances. Our perturbative expansion
corresponds to resumming the exponential perturbation expansion given by Kunihiro. The
correction to the WKB result is also presented. In particular, we show that the sum of the
highest-power terms in the exponential perturbation expansion can reproduce the well-known
WKB results.
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